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Abstract

Convolution is an extremely common computation, but it is rather computationally expensive to perform.
We attempt to perform a two dimensional convolution of an image and filter using an optical correlator.
While optical correlators have been around for many years, some of the techniques require large amounts
of preparatory work for a single operation making them infeasible for regular use. In this paper we explore
novel methods of producing an optical correlator that do not require such overhead making them much more
feasible to be used for computation. Although the mathematics and theory seem to suggest our filtering
method is effective, experimental results could not confirm this to be the case.

1 Introduction

In the age of large data sets, computation has become a
nightmare. Disciplines like data searching, image anal-
ysis, and artificial intelligence require large numbers
of correlation and convolution1 operations whose time
and memory requirements grow quickly with the size
of the input. One previously proposed solution to this
problem is to change the method of computation from
digital to optical.

1.1 Background

According to Fraunhofer diffraction theory, the diffrac-
tion pattern produced at infinity is a Fourier transform
of the diffracting aperture. Because of the prevalence
of the Fourier transform in many areas of science and
math, this property makes aperture diffraction consid-
erably useful in optical computation and will form a the
backbone of all the computations we perform. While
the Fourier transform of the aperture is produced at
an infinite distance, we can use a converging lens to
focus these parallel beams of light on a point one fo-
cal distance from the lens making measurement of the
resultant pattern feasible.

According to the convolution theorem, convolution
in the spatial domain is equivalent to point-wise mul-
tiplication in the frequency domain. This is useful be-
cause multiplying light is relatively easy to do as we
can simply pass the light through a filter that blocks

a certain fraction of the light. This is equivalent to
multiplying by a number in the range [0,1] inclusive.

Combining the Fourier transform produced by
diffraction from the aperture and multiplication from
filters we have enough to perform simple convolutions
and correlations. To perform these operations we need
only an aperture with the shape of our image and a fil-
ter whose pattern is the Fourier transform of the kernel
you’d like to perform the correlation operation with.
For a given binary image (black, white, no gray), the
image itself can be used as the aperture if produced
on a transparent medium. Producing a proper filter
though is slightly more involved.

In general, the Fourier transform of a function is
complex valued. This creates quite a problem as it
is difficult to directly interact with the complex com-
ponents of light. Previously, holographic filters were
produced which recorded the entire complex-valued
Fourier transform of the desired correlating image [1].
To produce each holographic filter, the aperture diffrac-
tion and lens setup described previously was used to
produce the Fourier transform of the desired function
on a photographic plate while a reference beam from
the same light source was also incident on the plate.
This obviously required a lot of potentially expensive
work because a new holographic filter had to be pro-
duced every time you wanted to convolve with a differ-
ent pattern. Instead of dealing with the hassle of the
complex valued filter, we instead avoid the problem al-

1In this paper, correlation and convolution will be referred to interchangeably since they are essentially the same operation. The
only difference between them is that the kernel is flipped in convolution and left in the original orientation for correlation.
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together by imposing restrictions on the function that
we are convolving our image with.

1.2 Filter Restrictions

Being that it is difficult to interact with the non-real
component of light we can impose restrictions on our
function so that the the imaginary component is ap-
proximately zero meaning that our filter must only deal
with the real component. The restrictions were formed
by inspection of the Fourier integral for an arbitrary
function f(x) which is shown below. For our purposes
we will only consider the case when f(x) is a real-valued
function.

f̂(ω) =

∫ ∞
−∞

f(x)e−2πixωdx

=

∫ ∞
−∞

f(x) cos(2πxω)dx

− i

∫ ∞
−∞

f(x) sin(2πxω)dx

In order for the imaginary component of our filter to be
zero, it is obvious from the the equation shown above
that we must require that∫ ∞

−∞
f(x) sin(2πxω)dx = 0 (1)

Since sine is an odd function and zero is an even func-
tion, we can deduce that f(x) must be an even func-
tion in order for this condition to hold. Although the
equations shown above represent the single dimensional
Fourier transform the result does extend to the two-
dimensional case. Effectively, this requires that the
function we wish to convolve our image with must ex-
hibit absolute symmetry in both the vertical and hori-
zontal dimensions.

This restriction is tight but, luckily, many of the
functions commonly used in convolutions exhibit this
symmetry. If an asymmetric filter is needed for a spe-
cific application this method will not be usable as you
must keep track of both the real and imaginary parts
of the Fourier transform in order for the resulting con-
volution to be accurate.

To proceed then, we restrict that the image we wish
to produce the filter from be symmetric horizontally
and vertically and then take its Fourier transform to
produce our filter. When using discretized data like
an image and using an implementation of the Fourier
transform like the Fast Fourier Transform (FFT), it is
usually the case that not all imaginary components of
the resulting transform are zero. To remedy this we
simply take the real component of the Fourier trans-
form as our filter. Although we are loosing some infor-
mation by doing this, it is shown in the next section

that this is typically still a good approximation of even
functions.

2 Numerical Simulation

To test whether this method of only using the real com-
ponent of a Fourier transform functions as we expect,
we can run the situation numerically. In this simula-
tion we correlate the two images shown below, making
sure that our filtering image is even. Both images are
binary so dark pixels have a value of zero while light
pixels have a value of one. Our method will be to nu-
merically take the Fourier transform of both images,
discard any artifact imaginary values that may arise
in the transform of the filter image, multiply the re-
sults, and then perform an inverse Fourier transform
to return the resulting image to the spatial domain.

(2)

(3)

To start we take the Fourier transform of both images
using the FFT algorithm. We then create a copy of
the transform of the even convolving image and set the
imaginary component of each pixel to zero. We then
point-wise multiply the two standard transforms and
the image transform with the real component of the
even image transform and perform the inverse Fourier
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transform to reconstruct both results. The two result-
ing images are shown below along with their difference.

(4)

(5)

(6)

As can be seen from the above images, the two results
are very similar. By looking at the difference image
we can see that the only substantial differences occur
in minimums of the pattern and are highly localized
(almost always to a single pixel). From these results
we expect that using only the real values for a filter
will still produce a good approximation of the actual
convolution.

Another method of calculating Fourier filters us-
ing a down-sampling of the Discrete Cosine Transform
(DCT) was also tested but results are not shown as the
convolution and difference images are indistinguishable
from those produced by ignoring the imaginary com-
ponents of the Fourier transform which makes sense
because these two operations should be equivalent for
real-valued, even functions.

3 Experiment

To test whether this method is indeed usable to per-
form computations, we now construct an optical cor-
relator to test whether this method of using a multi-
plicative real filter works.

3.1 Experimental Setup

Light from a Helium-Neon Laser passes through a spa-
tial filter (10x magnification). The light then passes
through a lens whose focal length is equal to its dis-
tance from the spacial filter which focuses the beam
at infinity. This beam then travels through the image
aperture after which it passes though another converg-
ing lens. At exactly one focal length of this lens fur-
ther on, the light passes through the Fourier filter after
which it it reconstructed by a converging lens placed
its own focal length beyond the Fourier filter. The light
then passes through a diverging lens and is projected
onto a screen. The diverging lens is unnecessary but it
helped to enlarge the resulting image. A picture of the
actual setup used for experiments can be found in the
last section of this article.

(7)

To block extraneous light, dark plate with a hole was
placed after the first converging lens and before the
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image. This blocked everything but the central maxi-
mum produced by the spatial filter in order to achieve
a more uniform beam.

3.2 Testing

A transparency of the Base Image (2) was used as the
image for all experiments. A total of two different
Fourier filters were tested, both filters were calculated
using the Even convolving image (3) from the numer-
ical simulation. The first filter tested was the result
of taking the real part of the FFT of the even, lone X
image. It is shown below. Using a filter in this way,
we can only multiply light by a value between zero and
one so the negative values produced by the transform
are simply set to zero. While this does cause us to lose
some accuracy, we saw with the numerical simulation
that the reconstructed pattern still looks mostly like
those of our original numerical simulation. An image
of this numerical result is shown next to the product
of our experiments for comparison.

(8)

This image was placed on the Fourier plane and ad-
justed to get the central light maximum to fall directly
on the center of the image. Aligning the filter precisely
was difficult so the lens after the Fourier plane was
moved slightly further from the Fourier plane so that a
real, magnified image of the Fourier filter with a bright
spot where the light was hitting it was produced. Us-
ing this method finer adjustments could be made by
hand to filter placement. An image of the alignment
that was used to produce our data is shown on the last
page of this article and a zoomed and colorized picture
of just the central maximum is shown below with the

maxima on the pattern marked.

(9)

As can be seen from the location of maxima in the
above image (the blue circles), the highest maxima do
not occur at the center of the pattern implying that
the alignment of the filter was slightly off. From the
distribution of maxima it looks like the central part of
the filter was low and left of the beam.

After alignment, all that was left was to record data.
Below is an image of the patten produced when no filter
is placed on the Fourier plane so the original image is
able to be perfectly reconstructed for comparison pur-
poses. Notice that because of the use of the converging
lens, the resulting image is inverted both horizontally
and vertically with respect to the original (2) although
it only looks to be inverted vertically as these images
were taken from the opposite side of the screen so that
the camera could be directly in line with the laser.

(10)

With the alignment procedure completed we moved
the lenses back to their proper positions and recorded
the resulting image, for which a colorized version is
shown below.
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(11)

Running a numerical simulation with this same filter
gives us a theoretical result with which we can com-
pare. This result is shown below. When comparing,
remember that one should be flipped vertically relative
to the other. As you can see, this experimental result
does not match the pattern of our numerical solutions
very well at all. The letters of the original image can
still be seen very clearly whereas we would expect not
to be able to make much out in the way of letters had
a convolution actually occurred.

(12)

The next experiment used a filter that was a down
sampling of a DCT of the even, lone X image. It was
thought that even though this filter performed exactly
the same as the real component of the Fourier filter in
the numerical solution, it might be different in experi-
mental trials as the filter pattern is obviously different.
The filter pattern is shown below.

(13)

After aligning this filter on the Fourier plane as we
described for the previous filter, data was collected and
a colorized image of the result is shown below.

(14)

Again we find that this does not agree with the re-
sult predicted by numerical simulation shown on the
left.

4 Conclusion

Overall, the experimental results did not agree well
with numerical predictions but this is not to say that
this method does not perform as expected. The
strengths of our proposed method is that we greatly
simplify the process of filter creation and should still
achieve a decent approximation of the convolution ac-
cording to numerical simulation. Part of the beauty
of this method is its simplicity in that because we are
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only multiplying the positive, real components of the
light by a number between zero and one this should
correspond to simply blocking a certain fraction of the
light using the filter. The real question then is why our
experimental results did not agree with our numerical
simulation if the method is so robust. It is our belief
that most of the reason our experimental results were
so different than expected was that precise filter align-
ment was extremely difficult. As we saw in the image
showing the alignment of our filters, the filters were
sightly misaligned when data was taken. Because of
this difference, we cannot expect our results to match
as we effectively convolved with the wrong filter as any
misplaced light or dark region of the filter would let
through or block undesired frequencies. It was also
noted that even the darkest areas of the transparancy
did not fully block the beam and so we could not ac-
tually multiply by zero in the convolution.

4.1 Future Works

In the future, we would like to find a better way of
aligning filters either by using a machined channel for
the light so the filters are held in the precise alignment
or by being able to measure our deviation from the
proper alignment using a method similar to the method
shown in this document and make fine adjustments to
filter position in order to compensate. It would also be
beneficial to find a way of printing tranparancies that
could actually block 100% of the light when needed.

In commercially produced optical correlators, a spa-
tial light modulator (SLM) is used to create image
apertures and filters. Using an SLM the alignment
might become easier as the SLM itself would not have

to me moved and very fine adjustments to the image
position on the SLM could be made. Using an SLM,
there is also possibly a way to create a complex-valued
filter like the holographic filters mentioned earlier be-
cause SLMs are sometimes able to modify the phase of
light passing through them [2].

The last suggestion for further work is to try to cre-
ate and use a complex valued filter. While they can be
produced on photographic plates as a standard holo-
gram, it might also be possible to calculate the holo-
gram pattern and then print it on to transparencies as
some sources claim is possible [3].
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6 Pictures

6.1 Setup
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6.2 Allignment
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